LIVER ANATOMY
Gross Anatomy
The liver is a roughly triangular organ that extends across the entire abdominal cavity just inferior to the diaphragm. Most of the liver’s mass is located on the right side of the body where it descends inferiorly toward the right kidney. The liver is made of very soft, pinkish-brown tissues encapsulated by a connective tissue capsule. This capsule is further covered and reinforced by the peritoneum of the abdominal cavity, which protects the liver and holds it in place within the abdomen.
The liver is a roughly triangular organ that extends across the entire abdominal cavity just inferior to the diaphragm. Most of the liver’s mass is located on the right side of the body where it descends inferiorly toward the right kidney. The liver is made of very soft, pinkish-brown tissues encapsulated by a connective tissue capsule. This capsule is further covered and reinforced by the peritoneum of the abdominal cavity, which protects the liver and holds it in place within the abdomen.
Ligaments of the liver
The peritoneum connects the liver in 4 locations: the coronary ligament, the left and right triangular ligaments, and the falciform ligament. These connections are not true ligaments in the anatomical sense; rather, they are condensed regions of peritoneal membrane that support the liver.
- The wide coronary ligament connects the central superior portion of the liver to the diaphragm.
- Located on the lateral borders of the left and right lobes, respectively, the left andright triangular ligaments connect the superior ends of the liver to the diaphragm.
- The falciform ligament runs inferiorly from the diaphragm across the anterior edge of the liver to its inferior border. At the inferior end of the liver, the falciform ligament forms the round ligament (ligamentum teres) of the liver and connects the liver to the umbilicus. The round ligament is a remnant of the umbilical vein that carries blood into the body during fetal development.
The liver consists of 4 distinct lobes – the left, right, caudate, and quadrate lobes.
- The left and right lobes are the largest lobes and are separated by the falciform ligament. The right lobe is about 5 to 6 times larger than the tapered left lobe.
- The small caudate lobe extends from the posterior side of the right lobe and wraps around the inferior vena cava.
- The small quadrate lobe is inferior to the caudate lobe and extends from the posterior side of the right lobe and wraps around the gallbladder.
LIVER- ANTERIOR AND POSTERIOR VIEW |
Bile Ducts
The tubes that carry bile through the liver and gallbladder are known as bile ducts and form a branched structure known as the biliary tree. Bile produced by liver cells drains into microscopic canals known as bile canaliculi. The countless bile canaliculi join together into many larger bile ducts found throughout the liver.
The tubes that carry bile through the liver and gallbladder are known as bile ducts and form a branched structure known as the biliary tree. Bile produced by liver cells drains into microscopic canals known as bile canaliculi. The countless bile canaliculi join together into many larger bile ducts found throughout the liver.
These bile ducts next join to form the larger left and right hepatic ducts, which carry bile from the left and right lobes of the liver. Those two hepatic ducts join to form the common hepatic duct that drains all bile away from the liver. The common hepatic duct finally joins with the cystic duct from the gallbladder to form the common bile duct, carrying bile to the duodenum of the small intestine. Most of the bile produced by the liver is pushed back up the cystic duct by peristalsis to arrive in the gallbladder for storage, until it is needed for digestion.
Blood Vessels
The blood supply of the liver is unique among all organs of the body due to the hepatic portal vein system. Blood travelling to the spleen, stomach, pancreas, gallbladder, and intestines passes through capillaries in these organs and is collected into the hepatic portal vein. The hepatic portal vein then delivers this blood to the tissues of the liver where the contents of the blood are divided up into smaller vessels and processed before being passed on to the rest of the body. Blood leaving the tissues of the liver collects into the hepatic veins that lead to the vena cava and return to the heart. The liver also has its own system of arteries and arterioles that provide oxygenated blood to its tissues just like any other organ.
The blood supply of the liver is unique among all organs of the body due to the hepatic portal vein system. Blood travelling to the spleen, stomach, pancreas, gallbladder, and intestines passes through capillaries in these organs and is collected into the hepatic portal vein. The hepatic portal vein then delivers this blood to the tissues of the liver where the contents of the blood are divided up into smaller vessels and processed before being passed on to the rest of the body. Blood leaving the tissues of the liver collects into the hepatic veins that lead to the vena cava and return to the heart. The liver also has its own system of arteries and arterioles that provide oxygenated blood to its tissues just like any other organ.
Lobules
The internal structure of the liver is made of around 100,000 small hexagonal functional units known as lobules. Each lobule consists of a central vein surrounded by 6 hepatic portal veins and 6 hepatic arteries. These blood vessels are connected by many capillary-like tubes called sinusoids, which extend from the portal veins and arteries to meet the central vein like spokes on a wheel.
The internal structure of the liver is made of around 100,000 small hexagonal functional units known as lobules. Each lobule consists of a central vein surrounded by 6 hepatic portal veins and 6 hepatic arteries. These blood vessels are connected by many capillary-like tubes called sinusoids, which extend from the portal veins and arteries to meet the central vein like spokes on a wheel.
Each sinusoid passes through liver tissue containing 2 main cell types: Kupffer cells and hepatocytes.
- Kupffer cells are a type of macrophage that capture and break down old, worn out red blood cells passing through the sinusoids.
- Hepatocytes are cuboidal epithelial cells that line the sinusoids and make up the majority of cells in the liver. Hepatocytes perform most of the liver’s functions – metabolism, storage, digestion, and bile production. Tiny bile collection vessels known as bile canaliculi run parallel to the sinusoids on the other side of the hepatocytes and drain into the bile ducts of the liver.
MNEMONICS
Liver: side with ligamentum venosum/ caudate lobe vs. side with quadrate lobe/ ligamentum teres "VC goes with VC":
The Venosum and Caudate is on same side as Vena Cava [posterior]. Therefore, quadrate and teres must be on anterior by default.
· See inferior-view diagram.
The Venosum and Caudate is on same side as Vena Cava [posterior]. Therefore, quadrate and teres must be on anterior by default.
· See inferior-view diagram.
Liver inferior markings showing right/left lobe vs. vascular divisions There's a Hepatic "H" on inferior of liver. One vertical stick of the H is the dividing line for anatomical right/left lobe and the other vertical stick is the divider for vascular halves. Stick that divides the liver into vascular halves is the one with vena cava impression (since vena cava carries blood, it's fortunate that it's the divider for blood halves).
Liver lobes: Gallbladder is associated with the quadrate lobe (think GQ magazine). The blood supply and bile drainage is from the left hepatic a. and v. and left hepatic duct. (LGBQ!) The IVC is associated with the caudate lobe, and more generally with the left hepatic vessels, because there is an “i” in both “ivc” and “right”, and a “c” in both “ivc” and “caudate”.